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Abstract

This work develops a digital feedback control system for a quantum system in an
effort to determine the viability of the Universal Software Radio Peripheral (USRP)
2954R for quantum sensing and control. Conducted alongside Lisa Poyneer and John
Breneman at the Lawrence Livermore National Laboratory (LLNL), this work eval-
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relation to an array of other platforms, develops workflows for incorporating existing
algorithms into the USRP environment and ensuring the portability of the algorithms
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Chapter 1

Introduction

Futuristic computing conjures up images of flying cars, holograms, and quantum com-
puters capable of computing the solution to any problem imaginable. While hovering
vehicles [18] and hologram-like projection technology [17] are here and being devel-
oped rapidly, scalable quantum computing remains a “10 year technology", forever
10 years away. Quantum computing suffers from an imbalance of hardware progress
with software progress. Functional hardware struggles to keep up with the rapid de-
velopment of theoretical quantum algorithms. This work aims to take a step toward
remedying that by validating the Universal Software Radio Peripheral (USRP), an

FPGA platform, for estimating and controlling quantum states.

1.1 Motivation

Quantum systems in general, not just quantum computers, provide a door into a wide
range of new advancements in science and technology. The term quantum systems
here is an umbrella term for many different physical systems with many possible
implementations. Two promising implementations are superconducting qubits and
ion traps. The former involves reducing the temperature to near absolute zero in a
dilution refrigerator and interacting with the qubit via RF signals [7]. The latter stores
the qubits as ions trapped in free space using electromagnetic fields [9]. While each

system faces a unique set of challenges and thus requires a unique approach, this work
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attempts to demonstrate that tracking and controlling quantum states is plausible and
provides ubiquitous benefits. Also agnostic of the system approach, there are a wide
range of applications including encryption and axion detection research. The former
involves making advancements in hardware to factor large numbers while the latter

hopes to leverage the sensitivity of quantum states to make difficult measurements

Modern day encryption algorithms depend heavily on the lack of an algorithm
that can factor large numbers in reasonable amounts of time. However, quantum
algorithms exist that are the exception to this trend. One such algorithm, Shor’s
algorithm, factors numbers quickly with a runtime that is polynomial in log(NV),
where N is the number of bits required to represent the number being factored.
Shor’s algorithm was purely theoretical until researchers were able to realize the
algorithm on hardware, first at IBM using an NMR implementation [19] and then
more recently at the University of Bristol using photonic qubits [11]. While neither of
the numbers that were factored are very large (21 for the photonic approach and 15 for
the NMR approach), a major hurdle in factoring larger numbers is the requirement of
larger quantum systems that actually behave according to the Hamiltonians used to
describe them. This requires hardware that can accurately measure and control the
state evolution of the quantum system in question. The notion of “quantum control"
in this context has two parts. The first refers to the ability to control the evolution
of the state or states of a quantum system at the appropriate time scale, and the
second is doing so while avoiding decoherence, the collapse of the quantum state to a
classical one [1]. It is worth noting that both implementations of Shor’s algorithm are
different from the two leading quantum computer implementations discussed before,
superconducting qubits and ion traps. Superconducting qubits, the focus of this work,
provide the benefit of scalability and this work aims to demonstrate a platform that

has the potential to increase coherence times.

In contrast to the practical appeal of quantum systems for furthering encryption
research and applications, axion detection offers a different allure. The axion is a
theoretical particle believed to be the silver bullet for physicists providing a solu-

tion to two important problems: what is dark matter [13] and why does quantum

16



chromodynamics seem to preserve CP-symmetry [12|? The theories surrounding the
answer to the latter rely upon the existence of axions. At the same time, axions are
a likely candidate for the answer to the former showing promise as a possible sub-
set of cold dark matter. However, the experimental search for axions, suffers from
the perennial issue of noise obstructing measurements. Thus, physicists interested in
axions have become interested in the possibility of using quantum systems as part
of their experimental apparatuses. Specifically, utilizing Superconducting Quantum
Interference Devices (SQUIDs), experiments are being run using a microwave cavity
and extremely strong magnetic fields in hopes of detecting axions [15]. The exper-
imental hypothesis revolves around axions disturbing the quantum states, so if the
quantum state evolution can be measured or estimated and subsequently compared
against the theoretical evolution, a fast reset signal can drive the quantum system to
a known state and watch the state evolve in the presence of some unknown particle,
believed to be an axion. The particular interest in a work like this one, lies with the
fact that the platform being used is an FPGA and thus can provide that reset signal

on the time scale of the evolution of the quantum system.

These applications demonstrate a need for progress in hardware for quantum sys-
tems. This thesis contributes to that goal by focusing on the implementation of an
optimal control algorithm on the USRP along side a host side data viewer. Previ-
ous work (section 1.3) has demonstrated analog control of transmons (section 1.2.1),
FPGA based digital feedback control of transmons, and USRP manipulation of quan-
tum gates. The encompassing project that this thesis fits within draws from these 3
key achievements in an effort to demonstrate the USRP as a viable FPGA platform for
feedback control of transmon state. By developing and implementing a sophisticated,
high speed, and compact control algorithm that is both optimal but can still operate

on an FPGA, this work contributes to the goal of quantum hardware advancement.
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1.2 Background

In order to continue the discussion, a brief review of the core concepts employed
throughout this work is necessary. The work was conducted by engineers, so the core
of the work is to solve the engineering question of if the USRP is viable platform for
quantum control. Thus, FPGA and controls concepts are utilized heavily. However,
the experimental apparatus was created and maintained by physicists, so a bit of

quantum physics knowledge will be helpful during the discussion.

1.2.1 Physics

The fundamental building block for quantum systems is the qubit. Analogous to tra-
ditional bits in classical computing, qubits are the basic unit of information. Classical
computing usually uses complementary metal oxide semiconductor (CMOS) transis-
tors to physically manifest the voltages that represent bits, high voltage for a 1 and
low voltage for a 0. The quantum analog, qubits, are dependent upon the notion
of superposition which allows the qubit to have a probability distribution across its
possible states leading to the popular phrase 'the qubit is 0 and 1 at the same time.’
The implementation of qubits for quantum systems is not yet standardized, but su-
perconducting charge qubits offer promise for their scalability and longer coherence
times. In order to create and maintain the superconducting charge qubits for the
system used in this work, extremely low temperatures are required. At near abso-
lute zero, the superconductive properties manifest. This work utilized a charge qubit
circuit architecture known as a planar transmon. A transmon is a non-linear, super-
conducting circuit that utilizes a Josephson Junction (JJ). Typically a JJ is a thin
(micron scale) layer of non-superconducting material sandwiched between two super-
conducting layers. In a transmon, the two layers are capacitively shunted together
to minimize charge noise. It can be configured to behave as a “qubit” [2]| as in this
work which utilized a planar structure to increase coherence times to as high as 40
us. In order to actually utilize the transmon, a method of measurement is neces-

sary. Thus, the transmon is placed inside of an aluminum cavity, sized to allow for
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50 mm 250 um

Figure 1-1: The figure above shows the physical structure of the cavity with the
transmon inside. The physical size constrains the frequency used to couple with the
cavity and "measure" the transmon. This image is courtesy of Liu Wei-Yang.

microwave RF tones to couple to the cavity. Thus, the cavity has a fundamental fre-
quency in addition to the qubit itself having a frequency that can be used to extract
information by supplying an input signal tuned to the qubit to prepare it and then
a second signal tuned to the cavity frequency and comparing the response signal to
the initial cavity signal. Exciting the system at the qubit’s resonant frequency can
be used to change the actual state of the qubit (including putting the qubit in a
superposition) while using the cavity’s resonant frequency will produce information
about the state. Figure 1-1 shows an example of a cavity with the transmon inside.
There are a variety of signal pulse shapes and power levels that can be leveraged to
extract different types and amount of information from the cavity plus qubit system.
This work is mainly concerned with what is known as a weak measurement that dis-
turbs the quantum system very little but also provides very little information. The
information manifests as a phase shift between the input signal tuned to the cavity
frequency after it has gone through the quantum system relative to the signal before
it went through the quantum system. The greater the strength of the measurement
the greater the measurement "back action" which results in quicker decoherence. On
the flip side, the weaker the measurement, the greater the relative role noise plays
in the measurement. By providing a resonant input, or Rabi oscillation drive, to the
quantum system, the system begins to oscillate but quickly dephases and decays due
to the quantum measurement back action of a weak measurement. This dephasing

is the crux of the experiment [5]. This dephasing occurs in this systems with a time
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constants of less than 10 us, despite achievable coherence times of up to 40 us.

1.2.2 FPGA

Implementing any algorithm or application on an FPGA presents a set of challenges
unique from typical CPU programming, an issue that will be discussed in more depth
in Chapter 5. However, there are a few key architectural points worth mentioning now.
The first is pipelining. Figure 1-2 gives a brief overview of pipelining. Traditional
processors come prebuilt with a multi-stage pipeline, but when implementing a new
algorithm or application on an FPGA, the task of pipelining is left to the application
developer.

It is unavoidable in a situation such as this work because of the extremely small
time scale at which the algorithm must process data and provide results in order to
stimulate the system before it has evolved too far. However, the additional stages
create an initial delay in the output. This coupled with the fact that the algorithm
of this work operates in a burst, not continuous, fashion means that the initial delay
actually is relived periodically whenever the reset is pulsed. However, as long as the
delay is small compared to the time scale of the quantum system’s evolution, it is
manageable. This timing constraint is further impacted by the precision used at any
point in the data flow. Thus, fixed point values with precision limited to what was
exactly needed were used at all times. This structure of the FPGA implementation
leads to a stark tradeoff in performance and compile time. As the algorithm was built
up, compile times grew from minutes to hours to days, a common hallmark of FPGA
programming. The compilation process can be divided into the synthesis stage and
the place and route stage. The synthesis simply checks the validity of the FPGA
code (VHDL in the case of this work). The place and route sections actually work on
determining a valid organization of the logic blocks that can successfully implement
the algorithm created by the VHDL. This place and route stage also determines
whether the desired clock rate is achievable in hardware. Often times, a majority of
the compilation time is spent running different optimization algorithms in order to

find a layout and routing scheme that meets timing.
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Figure 1-2: This diagram provides a visual explanation of how pipelining works. Each
color corresponds to a single operation or task. Each letter corresponds to the modular
basic functions that the processor can implement. Thus, increasing throughput is a
matter of ensuring that as many of the different modular functions are being utilized
at the same time as possible.

1.2.3 Controls

At the end of the day, the goal is to actually control the quantum system, and thus, an
understanding of the underlying control concepts is critical. The first notable point
is this control system is constructed as a discrete time controller. Each time step
samples a new weak measurement and generates a new output command signal, with
some allowances for initial pipeline delay (see section 1.2.2) and windowing effects
which will be discussed in Chapter 3 as part of the algorithm. Figure 1-3 gives a side

by side of a generic feedback system and the analogous feedback structure used in this
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work. The algorithms implemented on the FPGA are analogous to various portions of
the feedback loop. The quantum system in the fridge can be represented as the plant
block and serves as the sink for any control system command signals and the source of
any system output signals. The sensor block maps to the initial steps of the control
algorithm that measures the dephasing of the system. The estimator block maps
to the estimation portion of the quantum control algorithm. Finally, the controller
block actually maps to the final command signal calculation portion of the control
algorithm by taking a desired or reference signal in combination with the estimation
of quantum state evolution (based on the dephasing of the system) to generate the
appropriate stimulus for the quantum system plant to extend the quantum coherence.
This basic control theory setup with a plant, sensor, estimator, and controller utilizes
a modular structure which if adhered to in the actual implementation allows for more
sophisticated versions of each block to be easily substituted resulting in a more robust
implementation. For this work, a relatively high fidelity sensor was used along with
a sophisticated estimator while the controller studied (pseudo-PLL) was relatively

simple.

1.3 Prior Work

Previous work at the Delft University of Technology [14], UC Berkeley [20], and
Yale [10] has demonstrated the ability to measure and control one or two transmons.
These achievements were part of the inspiration for this work. The Berkley group, for
example, had a quantum system and analog hardware that measured the dephasing
and corrected for it using an analog phase-locked loop. The dephasing results in
decaying Rabi oscillations, but with a feedback control system, the Berkeley team
was able to stabilize the Rabi oscillations indefinitely and generated Figure 1-4. The
Delft UT work employed a similar approach but used a predetermined threshold rather
than a PLL. One of the key facts here is that both systems used analog hardware
which has limitations in the sophistication of the controller that can be implemented.

The Yale work provides yet another indication that this current work has promise
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Figure 1-3: This diagram draws an analogy from the generic

plant /controller /sensor /estimator paradaigm to the portions of the QSCA ar-
ranged in a simple feedback loop.

by demonstrating that an FPGA can be used to do digital feedback control with
simple control schemes. Another large scale collaboration [4] actually was able to
demonstrate quantum gate control using the USRP which furthered the hypothesis
that the USRP could serve as a viable hardware platform. Ultimately, this work is
concerned with the possibility of using digital hardware because of the advantage
of implementing optimal control strategies. The specific type of digital hardware
selected was an FPGA (a comparison of other digital hardware options are discussed

in Chapter 5) for the flexibility and performance specifications.

1.4 Current Work

Thus, a major driver for this experiment is to demonstrate that with sufficient digital
hardware, a more sophisticated control scheme can be implemented. The proposed

FPGA platform is the USRP. It is a software defined radio with an FPGA for control
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Figure 1-4: This image demonstrates what success looks like by sustaining Rabi oscil-
lations using feedback. This result was achieved using analog hardware at Berkeley.
The image is courtesy of Vijay et al

and data processing that has shown promise for wireless communication research [6]

at similar frequencies to what this work operates near.

FPGA
Algorithm domain

A/D

Tunable L]
parameters

Figure 1-5: This diagram lays out the important interfaces and algorithm segments
explored in this work. The ADCs take inputs from the quantum system and interface
with the FPGA (details of which depend on the platform). The data is then pipelined
through a 3 stage algorithm (process, estimate, and command) before interfacing with
the outside world via data sent back to the user/host and stimuli generated via the
DACs. This image is courtesy of Lisa Poyneer.

Figure 1-5 shows the overall layout of the processing. The inputs from the experi-
ment come into the USRP through ADCs and interact with a device specific interface
before going through the FPGA processing. This is also demonstrates the need for
a user interface that sends data back to the host. Afterwards, the output from the

FPGA goes through the DACs in order to actually drive the quantum system in

24



feedback. The focus of this work will be on creating the appropriate interface im-
plementation to support the existing FPGA processing as well as build out more of
the FPGA processing. The FPGA processing, which will be discussed in more detail
in Chapter 3, can be broken into 3 steps: Process, Estimate, and Command. The
Process step is effectively a phase difference measurement between the two RF tones
(one that has interacted with the system and one that hasn’t), signal and reference.
The Estimate step implements an algorithm to determine how the probability of the
transmon’s state will evolve. The Command step applies a varying amplitude sig-
nal to appropriately modulate the output RF tone used for control. The final step,
Command, was built out as part of this work while the first two steps were for the
most part completed and in the testing phase for the duration of this work. The main
addition to the project brought by this work was the USRP. None of the processing
had been targeted to the USRP until this work, though for a significant portion of
time, the Innovative Integration (II) X6-1000M FPGA platform was used. In an ef-
fort to modernize and simplify the system, this study into the viability of the USRP
platform began.
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Chapter 2

Experimental Process

Ultimately, this thesis work involved a combination of software development and
hardware interfacing. The embedded application development and data analysis de-
manded a wide range software tools, and the exotic constraints of superconducting
qubits required a lot of specialized hardware. Luckily, the laboratory experimental
setup, which will be described in this chapter, was mostly predefined removing the
uncertainty of various quantum systems and how they behave. It also provided a

fixed hardware interface to develop toward on the USRP.

Reference
-
Measurement [’
* Quantum System (or

Control .| simulated stimuli) Signal

' >
R

- FPGA

o A
o

Figure 2-1: The diagram above gives the high level layout of the experimental appa-
ratus. The measurement and control tones are inputs to the quantum system while
the signal and reference tones provide inputs to the FPGA.
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2.1 Physical Apparatus

In order to validate the USRP as a quantum control platform, it was inserted into
a feedback loop with a quantum system. It served the role of sensor, estimator, and
controller in a classical control context. The “plant” it interacted with was a quantum
system or simulated stimuli depending on the stage of testing. A block diagram of the
high level organization of the experiment is illustrated by Figure 2-1. The quantum
system is excited by a Measurement and Control RF tone and responds with a RF
tone that this work will refer to as “signal” while referring to the Measurement RF
tone as ‘reference” before entering the FPGA for processing. The Control RF tone
is then produced by the FPGA to correct the quantum system. The details of the
experimental setup depends on whether the experiment is conducted in the laboratory
or in a bench top fashion. The former involves an actual quantum system inside a
dilution refrigerator while the latter simulates the output of the quantum system

using arbitrary waveform generators (AWGs).

2.1.1 Bench top Testing

User

Signal
i W
Oscilliscope \—b Aubitrary Waveform Reference

Generator

Trigger

- - EE = = - = = -
I -

I Control € Estimate € Measure I

Figure 2-2: This diagram specifies the layout of the bench top testing phase in which
the algorithm running on the FPGA (USRP or otherwise) is stimulated using an
AWG and data is sent back to the host and viewed on an oscilloscope to ensure that
known inputs resulted in the correct outputs.

Bench top experimentation is a crucial step to verify functionality before beginning
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laboratory experiments. Figure 2-2 describes how the USRP interacts with simulated
quantum system output. In this scenario the AWG simply generates a RF tone which
the USRP can internally mix down to the desired intermediate frequency (IF) of 25
MHz and then process as inputs to the algorithm that does the sensing, estimating,
and controlling. Chapter 3 will discuss the details of the Quantum Sensing and
Control Algorithm (QSCA). The AWG also provides the trigger for data collection
on the USRP. While most of the connections to the USRP are SMA cables, the trigger
must be routed through a D-subminiature 15 breakout board. The data collected is
sent through the QSCA before being sent back to the user for display and saving to
disk (and later analysis and post processing) over a PCle x4 channel cable for high

throughput data.

2.1.2 Laboratory Testing

When laboratory experiments are conducted, the quantum system being used is a
transmon held inside a custom aluminum cavity kept at 7 mK inside of a Bluefors
dilution refrigerator named Jarvis. Figure 2-3 outlines the experimental apparatus
when in the lab.

The qubit’s ground to first-excited state transition frequency is around 4.5 GHz
which corresponds to the Control RF label entering the quantum system. The mixer is
an optional element depending on the frequency capabilities of the FPGA in use. The
cavity’s fundamental frequency is around 7.5GHz which corresponds to the Measure
RF label entering the quantum system in addition to being routed around as the
reference line. Both the transmon and resonator are addressed by microwave pulses
that couple to the cavity. Microwave signals leaving the cavity are amplified by a
Josephson traveling wave parametric amplifier (TWPA) located at base temperature,
a 4 K high-electron-mobility transistor (HEMPT) amplifier, and room temperature
amplifier. The response from the transmon in the fridge is amplified and mixed to
25 MHz. These two signals, signal and reference are the fundamental inputs to be
processed on an FPGA.

After the FPGA has completed its processing, data is pushed out to users in
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Figure 2-3: The diagram above highlights the connections between the quantum
system and the FPGA when testing in the lab. The reference and signal RF tones
are inputs to the FPGA in order to actually determine the appropriate control RF
tone. This image is courtesy of Lisa Poyneer.

Figure 2-4: It is often useful to have an idea of the physical layout and form factor
of the quantum system under testing. Fach gold canister is a set of transmons inside
the Bluefors dilution fridge.

addition to the control RF tone being modulated. The first set of laboratory experi-

ments consist of comparing three data collection platforms. The Alazar digitizer, the
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Integrated Innovations (II) FPGA, and the USRP. The Alazar provides the highest
fidelity measurements but is not configurable for custom data processing in real time.
It serves as the gold standard of comparison for the II and the USRP. The qubit
system addressed for most of this work is known as Nash and sits inside one of the
canisters within Jarvis. Figure 2-4 shows Jarvis during maintenance after it has been

warmed up. Each gold canister contains one or more qubit systems.

Control ~4 GHz _[——
Atten

Measurement ~7GHz :
Atten

Power Balanced

i
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® zl
ov,

3.0V,
10 MHz Rubidium 1 17 square wave  Low Pass Filter
Reference Clock  Trigger

3
wyr
wr

50 ohm
termination

Blue is inside

dilution TWPA: traveling wave
fridge parametric amplifier

Figure 2-5: A more detailed layout of the experimental setup is helpful for drawing
the correct conclusions, troubleshooting, and inspiring new experimental ideas such as
changing the IF used and seeing the impact on performance. This image is courtesy
of Spencer Tomarken.

Figure 4-16 has a more detailed breakdown of the experimental layout in the lab.
The AWG is controlled via the lab computer using a program called Labber and
generates the control and measurement RF tones. A low phase noise local oscillator
drives the mixers so that the RF tones can address Nash. The signals coming out of
Jarvis are amplified (both at cryogenic temperatures and room temperature) before
being filtered and mixed down and being fed into the USRP for measurement and data
processing. All the components share a 10MHz temperature compensated Rubidium

clock and pulses are generated alongside a 1KHz square wave trigger signal.
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2.2 Development Workflow

Creating applications and implementing algorithms for FPGA based systems follow
a different development cycle than CPU applications. CPU programming at the
most fundamental level is organizing processor instructions to fetch, process, and
store data. FPGA programming involves implementing algorithms such that they
can be synthesized in hardware from fundamental logic blocks. However, some tra-
ditional programming paradigms do carry over into FPGA applications. Modularity
is one of those aspects that is consistent. A large part of the workflow for this thesis
work involved modular creation and testing of portions of the FPGA application and
algorithm before integration occurred. Another similarity can be seen in the user
interface since that portion was implemented on a traditional CPU for ease of use.
The methods used for this work revolve around a development flow which spans mul-
tiple tool chains. The tool chains used include LabVIEW (LabVIEW FPGA), Matlab
(Simulink and HDL Coder), Python, Xilinx (Vivado), and Labber. This list while

not exhaustive is relatively comprehensive.

2.2.1 System Modeling

With nothing more than the idea that the quantum state of the superconducting
qubits can be estimated and controlled using an FPGA, algorithm creation and im-
plementation cannot begin. The crucial first step is actually developing a deeper
understanding of the quantum system itself. This process began by working with
physicists to understand the signal characteristics going into the fridge as well as
coming out in addition to any parameters set impacting the fridge unrelated to the
signals. Following a high level understanding of the experiment, developing a sim-
ulation to help understand how different types of measurements perturb the system
was paramount, thus simulation began in Matlab and Python. Using QuTiP, a high
fidelity python based quantum simulation API, an intensive detailed quantum simu-
lation of the system was created to model and verify those parameters and quantum

behavior in response to different algorithms for sensing and control. A lower fidelity
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and less computationally intensive simulation was also created in MATLAB to facil-
itate faster prototyping but major milestones in progress that involved changing any
fundamental parameter were invariably checked against the more precise simulation

in QuTiP.

2.2.2 Algorithm Creation

The actual algorithm development (see Chapter 3) began by outlining the three stages
of the computation: Process, Estimate, and Control. These three stages represent the
high level goal of the algorithm to process the incoming RF signals to discern a phase
difference (process), use that information to estimate the probability trajectory of the
system (estimate), and the compute the appropriate control signal (control). The code
implementation began in MATLAB with scripts operating on fabricated data. Once
these MATLAB scripts were behaving as expected (in conjunction with QuTiP and
MATLAB physics simulations), development moved to Simulink. Initially still using
floating point values the Simulink implementation was compared to the MATLAB
scripts implementation since the native data type used in MATLAB scripts is also
floating point. Only once these agreed did the team move to fixed point Simulink
implementation in order to more accurately represent what would eventually be put
on the FPGA. This implementation was then compared to the floating point output
and adjusted until a tolerable error was reached between the floating point and fixed
point implementations. Throughout the process Simulink offered a wide range of tools
for aiding in the algorithm creation including data dictionaries (custom data types),
reference models (modularity), and HDL optimized functions (extremely useful in

meeting timing).

2.2.3 Hardware Realization

Once a suitable fixed point Simulink model is achieved, the process of hardware imple-
mentation can begin. Using the HDLCoder MATLAB package, the team was able to

generate VHDL that implements the fixed point functionality of the Simulink model.
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During the generation process the user has the option to customize how the generated
VHDL is formatted with everything from reset polarity options to adapative pipelin-
ing to automatic testbench generation. After the VHDL is generated, HDLCoder
also provides statistics and analysis on the timing and estimated resource utilization
for a given target device. However, the final synthesis, place and route, and device
programing is completed using the native Xilinx compilation tools. For the II this
happens in ISE while for the USRP this happens under the hood since it is insulated
from the Xilinx compilation tools. Instead, the USRP uses LabVIEW FPGA as the
development environment. The generated VHDL has to be modified slightly before
being imported into the LabVIEW FPGA and compiled for the USRP.

[: Configure Component-Level IP UserRTL_d_microblaze_wrapper (Page & of 8) @
XML Export
XML file content
<%l version="1.0" enceding="UTF-8" standalone="no" 7> -

«<!-- Mational Instrurents recommends that you do not change this CLIP declaration file outside of the Configure Component-Level IP wizard. [
You can modify this declaration file on the Component-Level IP page of the FPGA Target Properties dialog box. --» ‘= ‘

<CLIPDeclaration Name="UserRTL_d_microblaze_wrapper">
<FormatVersion>4.3</FormatVersion>
<Description/>
«<ToplevelEntityAndArchitecture>
<SynthesisModel>
<Entity= UserRTL_d_microblaze wrapper</Entity>
<Architecture>STRUCTURE </Architecture=
=/SynthesisModel>
<SimulationModel>
<Entity>UserRTL_d_microblaze_wrapper</Entity=
< Architecture>STRUCTURE</Arch \tecture:\l
</SimulationModel>
</ToplevelbntityAndArchitectures

AML file path
Efgit\MicroBlaze_UART\labview_fpga_uart\UserRTL_d_microblaze_wrapperxml

I < Back ][ Finish ][ Cancel l[ Help ]

Figure 2-6: This final stage of the XML Wrapper generation process in LabVIEW
FPGA shows a preview of the generated XML indicated that the user could write the
XML wrapper from the ground up, but to avoid time costing errors, this work simply
used the native generation tools. This image is courtesy of John at fpganow.com

These modifications are to account for a lack of supported data types in LabVIEW
FPGA as well as library structure issues since reference models manifest as external
libraries when HDLCoder generates VHDL. However, even with these changes, the
VHDL isn’t ready to be integrated in the National Instrument’s LabVIEW environ-
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ment just yet. Figure 2-6 shows an example of the XML ’'wrapper’ that must be
created for the VHDL to define the ports such that LabVIEW FPGA can interpret
them correctly. This entire process involved quite a bit of trial and error, NI specifi-

cations research, and interfacing with NI support teams.

2.2.4 Analysis

The "final" step of the development workflow involved analyzing data collected either
in a bench top fashion or laboratory fashion in order to validate (or invalidate) the
current implementation. The analysis workflow began with the generation of the
appropriate stimuli for the USRP, either internal signals, AWG signals, or quantum
system output. The USRP would then log the input data as well as any processed
data to disk. Developing this functionality is what is referred to as the 'LabVIEW
Host’ throughout this work. It offered real time data viewing, data saving utility,
and tunable updating capabilities. In the future, it would also interface with the
USRP outputs. The interaction with the physical experimental setup occurred by
using Labber to drive the laboratory set up. Finallyy, MATLAB scripts were used
to generate the plots in post experiment data analysis to determine the effectiveness
of the implementation. The post processing comes in two flavors. Firstly, is simply
plotting and formatting outputs saved by the USRP to ensure the right signal quality
(SNR, spectrum shape, etc). Next is actually taking the inputs saved by the USRP
and "playing" the values through the Simulink model. The fixed point Simulink will
output values that should match the outputs saved by the USRP running in real
time. This comparison allows for more fine tuning of parameters and bit widths. By
using real data, bit starved operations and over-precise operations in the Simulink
can be rectified quickly. Another aspect of the analysis is the comparison of the
outputs generated by the II and Alazar versus the USRP. The goal of this work
is to understand the capabilities the USRP has in quantum control experiments and
validate it as a viable platform, and to do that it should be compared against industry

standard tools using the metrics from above.
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Chapter 3

Quantum Sensing and Control

Algorithm (QSCA)

Controlling the the state of this work’s quantum system is the end goal of the QSCA.
The QSCA is the functionality that goes inside the blue square (see Figure 1-5 or 2-
3). Another goal of this work was to improve and modify the QSCA to leverage any
USRP specific properties while still maintaining portability across FPGA platforms.
The QSCA has 3 core components: Process, Estimate, and Command. The Process
stage detects a phase difference in the two input signals. Next, the Estimate stage
applies LLNL proprietary algorithms to estimate the evolution of the quantum state
probability distribution. Finally, the Command stage uses that estimate to generate
the appropriate command signal in closed loop feedback. The first two stages (Process
and Estimate) were part of the prior work done by the LLNL team before this work
began. However, this work did contribute to the Command stage development as well
as making any adjustments to the Process and Estimate stages in order to ensure

functionality on the USRP.

3.1 Process

The Process stage of the QSCA begins the algorithm by implementing a moving pe-

riodogram, to measure the phase difference between the two signals, that expects
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two input waveforms from an ADC along with two tunable parameters. One param-
eter selects the window size of the moving periodogram and the other provides an
overall phase offset (since the output of this block is a mangitude and phase). The
general scheme leverages the fact that a predetermined IF of 25MHz is being used,
thus the internal LOs are set to mix the input signal with two LOs at 25MHz but
90 degrees out of phase. The output is then averaged using a moving average whose
window is determined by the tunable parameter. The resultant signals are sent into
an optimized CORDIC algorithm block in order to compute phase and magnitude in-
formation. The key piece of information is the phase, but the magnitude information
helps signal and synchronize the Estimate and Command stages (See 3.2 and 3.3) on
when to start computing a motion update and command update, respectively. The
phase calculated is initially in degrees, but some processing is required to make the
values suitable for the Estimate stage, and as a result the final output was a normal-
ized value from -1 to 1. This also required logic to handle phase wrapping issues after

the CORDIC output but before heading into the Estimate stage.

3.2 Estimate

The Estimate stage, comprised of a state estimation algorithm, used a variety of
tunable parameters and the instantaneous phase difference generated by the Process
stage to calculate a quantum state probability distribution estimate. This estimate
mapped to the trajectory of the qubit’s state. The state estimation algorithm used was
a bayesian tracker. Similar to a Kalman filter, the tracker had an internal model of the
physics driving the quantum system based on system parameters such as measurement
strength and qubit frequency. Each moving periodogram output was used to calculate
the weight assigned to the likelihood of ground or excited. This information was then
used in conjunction with the internal physics model to understand how the state
changes due to natural evolution as well as the measurement back action. Finally,
the internal state of the qubit is updated using a discrete state-space model of the

system differential equation involving the Hamiltonian. This process occurs once
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every window as specified in the initial tunable parameter provided to the Process

stage.

3.3 Command

Unlike the previous two stages, the Command stage was largely unimplemented be-
fore this work began. Thus, more time was spent exploring possibilities of how to
generate the appropriate command signal in a closed loop situation. Two options
stood out: a simple pseudo-PLL or state feedback. The latter posed a more signifi-
cant challenge with unproven worth but interesting possibilities. However, given the
time constraints, the former was implemented instead. A basic PLL, or phase locked
loop, operates as control loop designed to keep two signals (a reference and a mea-
sured) in phase with one another. It does this with three basic components: a phase
comparator, a low pass filter, and a voltage controlled oscillator (VCO). In this work
the phase comparator is implemented as a mixer with a fixed LO, the low pass filter
is still a low pass filter, but the VCO is replaced with the dynamics of the quantum
system since the oscillation frequency of the qubit’s resonance is dependent on a DC
voltage.

The general scheme involved using the estimate as a trajectory to which a cor-
rection needed to be applied (due to the phase difference at the beginning of the
QSCA). This was achieved by multiplying the input to the Command block with the
output of a local oscillator at the desired frequency which served as a reference. This
product was then filtered to remove the high frequency component. Finally a gain
was applied and a nominal offset added to generate the final command output. An

diagram detailing the structure can be found in Figure 3-1.

3.3.1 Mixer

The first stage of the Command block is a mixer. The mixer expects two inputs: a
local oscillator (LO) and the Estimate stage output. Both signals are at the same

Rabi frequency f, = 625 kHz. The output of the mixer will produce a signal that
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Figure 3-1: This block diagram details the QSCA section structure with an emphasis
on the command section structure. The three key stages of the command section are
the mixer, low pass filter, and the gain/offset.

has two frequencies f; — fo and f; + fo. Figure 3-2 demonstrates the operation of a
mixer like the one implemented in Simulink. In this implementation the LO has been
configured such that f; = fo = f, providing an output signal at 2f, with a DC offset
that is related to the phase difference of the signals. A 0° phase difference will produce
a positive DC offset, 180° of phase difference will produce a negative DC offset, and
90° will produce zero DC offset. Thus, since the Estimate block produces a signal
that needs to be phase-locked to the LO, the Command block needs produce non-zero
command signals whenever there is a non-zero phase difference. This is achieved by
intentionally offsetting the LO output by 90° before mixing with the Estimate output.
Thus, the mixer stage generates a signal at 2 f, with a DC offset proportional to phase

difference of the estimated trajectory of the quantum system and the reference phase

provided by the LO.

3.3.2 Filter

Following the mixer, the Command block needs to extract the DC offset from the

signal. This comes in the form of a low pass filter (LPF). The design and imple-
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Figure 3-2: The image above shows the basic operation of a mixer. For this portion,
the RF line is the estimate from the Estimate stage and the LO is the a local oscillator
at the Rabi frequency of 625kHz.

mentation of the LPF provided a wide array of design tradeoffs. The first tradeoff
involved selecting if the LPF should be digital or analog. The entire system up until
this point (aside from the radio peripherals of the USRP) was implemented digitally,
so the kneejerk response was to continue in a digital fashion. However, low latency
was a huge issue, and digital filters have notoriously longer latencies for a given level
of attenuation. Thus, analog filters seemed to be the way to go, but an even larger
issue of flexibility of design put a stop to that. This coupled with the fact that with
careful tuning digital filters can perform as good as their analog counterparts settled
the first design tradeoff and work continued toward implementing a digital LPF. The
first step was to define a theoretical bound of performance as a relationship between
the LPF bandwidth and latency. The bandwidth in this case is the cutoff frequency
of the LPF while the latency can be measured through the 10% to 90% rise time
of the step response of the LPF. Using a single stage, first order LPF to model the
theoretical best case scenario, the solution to the differential equation describing the

system is

V(t)=Vo(l—e7) (3.1)
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where the time constant of the LPF defined as

1

T 2n f,

(3.2)

which is a necessary component in the expression of the rise time which can be reached

by solving equation 3.1 for time.

V(t))
Vo

tio = —7in(1 —.1) = 7(In(10) — In(9))

t=—7in(1 -

tooy = —7in(1 —.9) = 7in(10)

trise = toow — tio% = TIn(9)

Substituting equation 3.2 into the rise time expression leaves an equation for the rise

time as a function of the cutoff frequency f,.

.35
trise ~ 3.3
; (33

Recall section 3.2 and the update latency of the Estimate block as dependent upon the
tunable parameters selected in the Process stage. The latencies can be 20, 40, 160, 320
ns and in order to actually compile and synthesize at 250MHz or 200MHz (the clock
speeds of the IT and USRP respectively), the latency allowed for the Estimate block
must be either 160 ns or 320 ns. This corresponds to a minimum cutoff frequency of

fe= 32'?323 = 1.09375 MHz for the LPF. Since the Rabi frequency is set at 625 kHz

the signal after the mixing stage will be at 1.25 MHz giving a little more than 150kHz

of breathing room for the attenuation.

With a minimum cutoff frequency on hand, the design turned toward another set
of tradeoffs: filter type. Even within the realm of digital filters, there is a wide variety
of filter types that can be mostly categorized as IIR or FIR where for the most part
IIR filters are extremely analogous to their counterpart analog implementation while
FIR filters are more "natively" digital. This is because IIR filters require feedback

to implement while FIR filters are simply a weighted sum of previous data values.
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Filter Order / Cutoff Frequency | 1 Hz | 100 kHz | 750 kHz
16 3.693 | 3.7016 | 3.7017

256 0.5449 | 3.7353 | 3.7073

1024 0692 | 3.7057 | 3.7453

Table 3.1: This table demonstrates the relationship between filter order and cutoff
frequency by measuring the ratio of the stopband ripple to the DC offset, a metric
that is desired to be as small as possible.

The magic happens when picking the weights (this is true for both IIR and FIR) [§].
IR filters provide improved performance in the form of stop band attenuation and
latency at the price of wider ranges of instability and non-linear phase relationship
with the output. Within the realm of IIR filters there were 4 types that were consid-
ered: Chebyshev Type I, Chebyshev Type II, Elliptical, and Butterworth. The two
Chebyshev filter implementations are mirrors of each other in terms of the presence
of stop band ripple versus pass band ripple while the elliptical draws a compromise
between the two with sharp roll off but ripple in both the stop and pass bands. A
final decision hasn’t been made on which filter implementation will be used as the
work continues, though the stability and linear phase relationship of FIR filters is

attractive and the initial performance metrics seem to be sufficient for this use case.

Another important factor explored within the filter design was filter order. In its
simplest form a higher order filter is similar to refiltering a signal that has already
been filtered. There are optimizations done in order to reduce the overhead of actually
just refiltering a signal, such that a higher order filter performance better than two
cascaded filters, but the notion is similar. As a result the delay of a higher order
filters is naturally higher with benefit of smaller stop band ripple as illustrated by
Table 3.1. Figure 3-3 compares the performance of two FIR filters as a function of

filter order.

Luckily, the entire filter design process is heavily reliant on computational tools
within the MATLAB environment since it provides a variety of filter design tool kits
in addition to optimized filter blocks intended to generate VHDL using HDLCoder.
The filterDesigner GUI (see Figure 3-4) in MATLAB allows the user to select the type
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Figure 3-3: These graphs show the relationship between the delay of two different
types of filters as a function of filter order. On the left is the constrained equiripple
approach and on the left is the window FIR filter approach. Both graphs have 20
data points with filter order ranging from 10 to 1024.

of filter (FIR or ITIR), the precise implementation (everything from an equiripple to a
high order Chebyshev), as well as the relevant parameters for that implementation.
This goes hand in hand with the HDLCoder side of things since the filterDesigner
can produce a coefficient list. On the surface, HDLCoder’s optimized filter blocks
only allow the user to change a few exposed parameters, but the main benefit of
these optimized blocks is the implementation within is user editable. Thus, using
the coefficients generated from the filterDesigner and the HDL optimized layout of
registers, multiplies, and accumulates a decent filter can be realized in hardware via

MATLAB and HDLCoder.

The final trade off worth noting is one that came up in other parts of the algorithm
development as well: division. A lot of the filter implementations utilized a division
stage which could implemented in one of three ways: natively, as a look up table, or
a bit shift. Each method has its benefits and drawbacks, though in order to meet
timing constraints the go-to method has been a look up table. For the time being a

bit shift was used and the divisors were forced to powers of two. Figure 3-6 and 3-5
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Figure 3-4: The image above shows what the filter design tool UI allows a user
to control. Everything from bit widths on coefficients to pole placement tools are
available.

show an IIR and FIR, respectively. In both cases the "Desired" used for comparison
is a baseline floating point moving average filter. Both track relatively well, but
surprisingly the ITIR seems track better which is surprising given the baseline moving

average filter can be expressed as a basic FIR filter.
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3.3.3 Gain and Offset

After the LPF stage of the Command block, the final touch to generate the com-
mand signal is the gain and nominal offset. Both of which are tunable parameters
designed to amplify and offset the command signal to the appropriate value before
the USRP radio peripherals transmit the signal back to the quantum system. Sim-
ulations suggest a gain value of 0.5 provides an appropriate value for the command
signal, however, tuning gain values also depend on the filter selected. For example,
Figure 3-6 and 3-5 also have a difference in gain, yet show similar tracking to the

desired PLL value.
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Chapter 4

USRP Validation

Keeping in mind that the overarching goal of this work is to determine the viability
of the USRP as a FPGA platform for quantum sensing and control, the process of
validation boils down to ascertaining the capabilities of the USRP, comparing them
against the required specifications, and searching for alternative implementations to
deal with how the specifications are structured or leveraging other benefits of the
USRP to overcome any shortfalls. This chapter examines the capabilities of the
USRP and features a case study of a testbed for the output of the initial process
step of the QSCA in addition to an analysis of the RF front end capabilities when

collecting actual data from the quantum system.

4.1 Baseline Capabilities

Before any "real" work could begin with the USRP and the QSCA, an understanding
of the USRP’s general development environment and capabilities was required. This
meant understading exactly how the USRP functioned and any quirks in the behavior
that could pose problems in the future.

As with most programming languages, beginning with a "Hello World" of sorts
is always a good place to start. For the USRP, that meant controlling the front
panel LEDs. Figure 4-1 provides a snippet of the code used to control the LEDs

on the USRP. This proved useful later as an indicator for when a new bit file had
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Figure 4-1: Controlling the LEDs on the USRP with signals from both the host
and with internal triggers proved to be a useful starting point for understanding the
LabVIEW Block Diagram flow.

been programmed, the receive data path was active, or if the USRP was responding
at all. Utilizing the USRP for increasingly complex mathematical operations was
the next logical step. Beginning with simple addition of hard coded numbers, this
work required building up to more complex operations such as reading values from a
file and performing simple DSP (FFT) operations in real time. The final checkpoint
was ensuring that the capability surrounding data writing was well understood in
order to take finalized data values and send them to the host before saving to disk.
This required careful consideration on the part of parallel processing since such large
amounts of data were being fed back to the host. Figure 4-2 shows one of the later

implementation of the saving utility that saved in a burst fashion.

All of these capabilities avoided the more complicated DSP blocks such as digital
down conversion as well as interacting with the RF front end in an effort to simplify
and accelerate the learning curve of the development environment. In sections 4.3

and 4.4 the DSP blocks and analog RF hardware are utilized and discussed.
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Figure 4-2: This LabVIEW block diagram snippet to save data proved to be a crucial
step in testing the QSCA

4.2 Case Study: Moving Periodogram Testbench

With a basic understanding of the USRP’s capabilities and development environment,

this work moved on to a case study of the first portion of the QSCA on the USRP.

TUNABLE VALUES
RESET
STAGE TRIGGERS

, HOST .
, SIDE :
\ CE . :
1 #7 l
: = :
: R ,

Figure 4-3: This diagram outlines the signal paths and scaffolding used to test the
moving periodogram on data from a file. It traces out the flow of data and triggers
between host PC and USRP target
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The moving periodogram served as the first important calculation step of the
algorithm and ensuring the USRP could reliably produce the correct output is the
subquestion that this case study answered. Even without any DSP and RF front
end interaction, validating the moving periodogram as a case study proved to be ex-
tremely valuable in learning even more of the intricacies of the USRP development
environment. Moreover, the actual process of migrating the existing Process imple-
mentation to the USRP and validating its functionality offered the additional benefit
of providing insight to the Simulink/HDLCoder workflow and how it interacts with
the USRP.

Reference [N
Signal [~V

Magnitude -
Phase /]

Processed Data
700~

Amplitude

700 0 ] \ i e R R
0 25 5 7.5 10125 15 17.5 20 22.5 25 27.5 30 32.5 3537.5 40 42.5 45 47.5 50 52.5 55 57.5 60 62.5 65 67.5 70 725 75
Time

Figure 4-4: Many plots like this one were generated using data collected by the II as
input to the USRP to determine if the calculations would match as expected. The plot
shows the two inputs (reference and signal) along side the two outputs (magnitude
and phase).

The test bench was run on both real data (open loop, collected in the lab using
the IT) and AWG data collected by the II. Using these signals as a stimulus to the
Process step, the USRP would ideally produce an output that matched what the
IT produced. The block diagram in Figure 4-3 outlines the scaffolding required to
implement a test bench for the Process block. The green arrows indicate control
signals such as reset signals and state machine transition signals. The blue arrows

represent data transfer either as arrays of data that can be post processed offline or

50



singular important tunable values that affect how the algorithm functions. The red

boxes are key blocks for user input or output such as plots in a real time viewer.
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Figure 4-5: The scaling factors were brought out as a tunable parameter to determine
what adjustments needed to be made when switching from the II to the USRP.

The results of the case study are summarized by Figure 4-4. Using data collected
by the IT under AWG stimulation as input for the USRP, the USRP was able to match
the expected (II) calculated output. However, when data was "played" through the
USRP’s implementation of the moving periodogram a few general issues presented
themselves. First and foremost was the issue of quickly moving data from the host
to the USRP and vice versa. The USRP development environment provided a wide
range of tools to transfer data from a memory mapped register system to a DMA
FIFO transfer engine. Each method had its own pros and cons. However, in an
effort to focus on the validating if the USRP was calculating the correct values, a
workaround was employed. The data was split into small chunks, approximately 1023
fixed point values, and the data was transferred to the USRP one point at a time
before being run through the Process portion of the QSCA. The output was then
stored in memory on the USRP before being transferred to the host PC one point at

a time. From there the host could construct the waveform and compare the value to
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what the values the II had calculated. These tradeoffs and issues stemmed from the
USRP’s architecture, however a few issues were actually due to mishandling of the

moving periodograms’s specifications.

While the values matched at the end as in Figure 4-4, this was only after dealing
with a myriad of issues. One of the confounding issues was data initially looking
completely flat. All the curves (reference, signal, magnitude, phase) seemed to be at
zero. This issue was traced to a difference in scaling factors. The II's ADCs were
configured with a specific value for the scaling and this was maintained when the II
data was used as input for the USRP. In order to deal with this, the scaling factor
for each type of signal was included as a parameter in the test bench as can be seen
in 4-5. Another issue that came up was a horizontal (time) offset as in 4-6. This first
manifested as out of phase sine waves on the signal and reference lines. Upon further
investigation the issue was traced to two separate issues. The less consequential one
was the inclusion of 28 cycles of "dead" time at the start of the file that needed to be
accounted for in order to match the IT’s calculations. The second issue was a trigger
misalignment meaning the data was not moving through the algorithmic pipeline
when intended. This trigger alignment would prove to be an issue throughout this
work because of the tight timing constraints. Luckily all these issues were caught
relatively early in the process and thus, the USRP was able to pass the first major
test and allowed the work to move on to bench top testing using signals from an

AWG.
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Figure 4-6: The trigger alignment issue first presented itself in the case study and
continued to be a challenge throughout this work.
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4.3 Benchtop Testing

Once the moving periodogram output was validated using static data read from pre-
viously saved AWG and quantum data, the next step was to begin to understand
how the actual RF components functioned. The process actually began with heavy
interactions with National Instruments in which they provided two things: a detailed
circuit schematic of the RF front end and sample LabVIEW program to setup the
receive and transmit channels and view incoming signals in real time (see Figures 4-7

and 4-8).
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2 @

Simp|e Rx Streaming Thi;template_isforthe Sirr!ple NI-USRP Streaming des_ign, a design that
shows the basics of streaming data on a USRP RIO device. See the block
diagram for mere information on how to use this template.
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Figure 4-7: The basic stock example of data viewing that LabVIEW provided for
streaming data often dropped samples which was unacceptable given the phase mea-
surement done by the moving periodogram was sensitive to such errors. Issues like
this would not be as noticeable in a scenario focused on wireless communications
research (the original intension of the USRP)
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Both of these pieces of information brought different issues to light when working
with the USRP. The circuit schematic in Figures 4-8 revealed a few troublesome
filters that could potentially eat into the SNR of the data coming out of the quantum
system. While multiple band pass filters didn’t pose an issue, there was a concern
that the 8OMHz low pass filter had a cutoff that was a bit too close to some of the
data which had components as high as 60MHz in testing with the II. Also, the sample
LabVIEW application seemed to have issues dropping data as it was transferred from
the USRP to the host. This was the same issues seen in the previous section and
ignored, but that was no longer possible since the inputs would now be coming from

real RF signals.

RXQ =

Figure 4-8: The analog front end schematic brought the multitude of internal filters
to light and caused worries about interfering with or degrading the SNR of data
collected using the USRP

4.3.1 Baseline Data Capture

The first task of the bench top testing process was to ensure the USRP could reliably
capture data from an AWG and save it to disk. This meant modifying the sample
LabVIEW application from a real time viewer to a data collection application. The
save functionality would play a key role in ensuring a uniform data format that could
be read in by MATLAB for further offline processing and output validation. After
iterating through a few different LabVIEW paradigms including producer/consumer,
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a state machine, and serial processing this was achieved. The producer/consumer

paradigm is demonstrated in Figure 4-9
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Figure 4-9: This code snippet shows the popular parallel data processing paradigm
used in LabVIEW known as producer/consumer. By using FIFOs to communicate
between parallel loops, data can be processed by two different rate loops.

Figure 4-10: The atypical connection pattern to accurately trigger on on an external
signal began with a GPIO Expansion Kit. Courtesy of Ettus Research.
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4.3.2 Moving Periodogram

With data reliably being sent to the USRP and USRP output being saved by the
host, the work moved on to actually validating the USRP’s ability to take in data
from an AWG, send it to the Process step of the QSCA, and save the output to a
file for processing and validation. The first major obstacle in this step was correctly
connecting all the necessary ports and cables. The USRP required an external 10
MHz reference clock, the signal and reference input lines, the trigger input. The
trigger input proved to be the most difficult. Requiring a breakout board (Figure
4-10) and a series of adapters to connect to a typical SMA cable to provide a 1 kHz
trigger (to mimic what was used in the actual lab setting), which dictated the burst

data read frequency.

After successfully connecting the USRP to all the required ports, the next chal-
lenge came in actually ensuring the USRP was looking at the right IF for data.
Unfortunately, overloaded terminology made this quite difficult with no clear way of
setting the desired center frequency of the receiver. Carrier frequency, center fre-
quency, local oscillator (LO) frequency, and just frequency were all parameters in the
"basic" LabVIEW application for receiving and transmitting signals. This resulted in
quite a few data sets that had PSDs similar to Figure 4-11. After a few conversations
with National Instruments engineers to get exact definitions for the parameters, this

work moved one step closer to the next goal of detecting a clear IF as in Figure 4-12.

The next challenge was ensuring no data values were being dropped because if
any values were dropped, the output would no longer be aligned with the trigger and
none of the analysis would be valid or useful. In order to ensure this didn’t happen
the initial basic LabVIEW application was modified to adopt a producer/consumer
framework and non-essential operations removed from the base application including
removing the digital down conversion (DDC) block which caused issues later on during
lab testing. The DDC does the job of ensuring an incoming signal is precisely mixed
down to IF (in the case of this work, 25 MHz). The hardware mixes the signal down
to a level close to IF, and the DDC uses built-in calibration data to finish the job.
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Figure 4-11: While experimenting with the right center frequency/carrier frequency
quite a few bench top data collections resulting in PSDs like above with no clear IF
peak.

Using the calibration values is also known as IQ impairment correction. While, the
DDC is a costly block in terms of latency, it turns out to be necessary in order to get
quality data from measurements. After some trial and error on what portions of the
application were essential to the proper calculation and configuration of the USRP,
data collected by the USRP was finally aligned with the trigger and tuned to the IF
of 25 MHz resulting in a PSD as in Figure 4-12.
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Figure 4-12: First major milestone of the USRP collecting data with a clear IF peak

at 25 MHz.
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4.3.3 Bayesian Tracker

After the USRP’s implementation of the moving periodogram was reliably outputting
data that matched the of the I FPGA, work moved on to the Bayesian Tracker. This

portion of the work had stalled on the IT because of a mismatch between the output of

58



the II's Estimate stage and the predicted output by MATLAB, which until this point

had been an exact match. Diagnosing this issue for the II meant re-synthesizing at
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Figure 4-13: Bayesian Tracker updates for first three values and then stops on II
courtesy of Lisa Poyneer

multiple different stages of the Bayesian Tracker algorithm and re-testing. This was a
cumbersome process that narrowed the error down to a the output of a single square
root look up table. However, this didn’t provide any clue as to why the mismatch
was arising here.

Moving to the USRP and running the same workflow did provide some insight
however. When the same moving periodogram + bayesian tracker implementation
as was used on the II, was put onto the USRP, the calculated output was the same.
This consistent but incorrect calculation can bee seen in Figure 4-15 and indicates an
issue upstream of the hardware.

Since the workflow for the II and the USRP after the VHDL generation step
is vastly different, and yet the the issue nearly identical, this added credence to
the notion that the issue was with the way HDLCoder was converting the Simulink

implementation of the algorithm to VHDL. Another possible issue would be with the
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Figure 4-14: LabVIEW code that implements LabVIEW Host for moving peri-
odogram and bayesian tracker.

algorithm itself, but the validation of the Simuilink version with the floating point

MATLAB script version seems to discourage this explanation.
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Figure 4-15: Bayesian Tracker updates for first three values and then stops on USRP
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4.4 Quantum System Testing

Once testing began in the lab, the data gathered would provide the clearest possible
picture of how well the USRP would perform in relation to the II and the Alazar dig-
itizer. While the initial plan was to work with the signal directly and mix down using

USRP, the plan was changed to keep the external heterodyne for two key reasons: in
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order to do a more direct comparison of the the performance of the IT and the USRP
as well as to avoid any issues with the upper limit of the USRP’s input frequency
range of 6 GHz.

Setting up the USRP with the quantum system for data collection was a similar
process to that of the bench top testing. The 10 MHz reference clock, signal and
reference lines, and trigger all had to be connected as before. The trigger again posed
issues since the USRP expected a TTL signal on the signal input and the trigger used
up to this point had an amplitude of 1 Volt. Figure 4-16 provides a more detailed

layout of the connections

Control ~4 GHz ‘Atten
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Mixer  power Balanced
Combins /Spltt Attenuator

3.0 Vg,
10 MHz Rubidium 1kHz q wave Low Pass Filter
Reference Clock  Trigger
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Blue is inside
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fridge parametric amplifier

Figure 4-16: A more detailed layout of the experimental setup is helpful for drawing
the correct conclusions, troubleshooting, and inspiring new experimental ideas such as
changing the IF used and seeing the impact on performance. This image is courtesy
of Spencer Tomarken.

The quantum system is stimulated using a Keysight AWG controlled through
Labber. This provides the control and measurement RF' tones at various power levels
configured to set the initial state of the qubit to ground or excited. While the end goal
of this work would require a weak measurement to disturb the quantum system as little
as possible, a range of power levels are checked to determine at what measurement
strength the signals coming out of the quantum system are usable. This determination

is made based on a variety of metrics including SNR and noise floor.
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4.4.1 Baseline Data Capture and RF Characteristics

When moving into the lab, two key issues became a concern: maximizing the SNR as
well as reducing the delay of the QSCA’s USRP implementation. In order to focus
on the latter issue, an attempt to reduce the amount of scaffolding code of the simple
streaming example application begun. No direct measurement of the latency of the
application before and after removing the scaffolding code was conducted, however
a heuristic was developed instead. If data ever became misaligned with the input
trigger, this indicated the latency of the implementation was too long. Latency also
increased as more data per trigger was collected or an increased amount of triggers
were collected. Thus, this work can claim that the more data that could be collected
without trigger misalignment, the better the latency of the application. Before any
modifications, were made to the base application, 512 data points per trigger could
be collected just one time before the misalignment occurred. While by the end, 2048
data points with 10,000 triggers could be collected without a trigger misalignment.
During this process, a majority of the code was safely removed without impacting
performance, but there was a key portion that added both a significant delay and
a key performance boost. This was tied directly to the former of the two issues:

maximizing the SNR.
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Figure 4-17: (a) This example trace shows what the USRP data would look like
without the DDC. (b) When computing the PSD of average data collected by USRP
when there is no DDC present, the IF is greatly attenuated

Maximizing the SNR was achieved via the direct digital down conversion. It
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allowed the USRP to maintain an SNR comparable to that of the II (see Figure 4-
20b) while removing the DDC completely distorted any data captured. Figure 4-17a
and 4-17b shows an example trace without the DDC running on the USRP. The IF
is still there but greatly attenuated and now a low frequency component dominates

the signal (see the AC coupling phenomenon of the noise floor).
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Figure 4-18: (a) Sample trace of USRP collected data with DDC (b) Reintroducing
the DDC and calculating the PSD of average data collected by USRP shows a clear
IF.

Figure 4-18a and 4-18b shows how reintroducing the DDC vastly improves the
performance of the USRP. The sample trace now more closely resembles a typical
trace from the II or the Alazar and the 25 MHz IF is clearly visible above the noise
floor. The main reason for this gap in performance is actually due to the fact that
the DDC includes a step for I(QQ impairment correction that is tuned to a set of values
unique to the layout of the USRP’s analog front end. Each time a trigger is received,

the I1Q corrections are applied and the data is calibrated to the "true" value.

4.4.2 USRP Signal Quality

After successfully and consistently being able to capture data with the USRP in the
lab, the next step in developing a clear picture of the USRP’s RF characteristics
is to take a few key metrics on the data gathered: SNR, noise floor, and temporal
PSDs. The SNR provides the most direct quantitative way to compare the USRP’s

performance to that of the II, the Alazar, and any other platforms in the future.
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Table 4-19a and 4-19b provide a snippet of the trend of the power SNR values for
a range of measurement strengths. As expected, the SNR decreases with weaker
measurement strengths as the system approaches the quantum noise floor. See the
appendix for more fine grained table of SNR values. The SNR values provide a
quantitative measure of the performance, while looking at traces also provides a
qualitative idea on the performance based on the presence of any quantization in the
output. This again matches the II in performance with the II achieving a 16.98 dB
SNR at 260 mV and a 1.35 dB SNR at 40mV on the same system as the USRP. The
Alazar also performance similarly with a 10.9 dB SNR at 7.6dBm input and 10.1 dB
at 4.8 dBm input. However, since the Alazar cannot run the real time control loop,
it is not a viable device and serves only to ensure that the data gathered by the II or

USRP is sufficiently usable which the SNR measurements seem to support.

Measurement Power Level SNR Measurement Power Level SNR
260 mV 16.65 dB 260 mV 17.17 dB
120 mV 4.33 dB 120 mV 4.57 dB
40 mV 1.35 dB 40 mV 1.37 dB

(a) (b)
Figure 4-19: (a) Ground State SNRs (b) Excited State SNRs

The next feature to look at is the noise floor of the data. In order to do this, this
work focuses on the power spectral density (PSD) of data traces collected. By taking
the average of all the PSDs a clear shape and peak appears around the IF of 25 MHz.
The noise floor of the data collected had a characteristic "bump" at frequencies below
IF as in Figure 4-20a. The II on the other hand as a relatively flat noise floor as in
Figure 4-20b. This is most likely attributed to the AC coupled nature of the some of
the components in the analog RF front end of the USRP. Overall, signal quality of
the USRP seemed to be sufficient relative to the II to continue testing.

4.4.3 1Q Populations

After running the first round of tests to determine the signal quality and RF char-
acteristics of the USRP, the next step is to determine if the calculations the USRP
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Figure 4-20: (a) The PSD of the USRP shows a clear noise floor due to AC coupling
(b) The II noise floor is relatively flat.

0 50 60
Frequency (MHz)

conducts produce data comparable to that of the II or Alazar. This is done by plot-
ting IQ populations. Recall that the first stage of the QSCA, the Process, generates
a phase and magnitude for each trace of data collected. By taking two sets of strong
measurements, one at excited and one at ground, an IQ population histogram can be
generated. The IQ populations are based on the entire pulse width (8 microseconds
for most of the USRP data), but the USRP is producing a weak measurement trace

in real time as in Figure 4-21.

The sharpness of the IQ populations generated depend heavily on the measure-
ment strength. Looking at Figure 4-22a and 4-22b it is clear that at 40mV, the
populations are bleeding into each other while at 260mV they are much more de-
fined. This of course comes at the cost of disturbing the quantum system more and

increasing the rate of decoherence.

Figure 4-24a and 4-24b demonstrate two sets of well defined IQQ populations col-
lected using relatively strong measurements. However, the populations are not in the
same place on the complex plane, demonstrating a key issue: the populations are
not guaranteed to be centered around the x axis, an orientation that would be useful
when calculating the angle between the two populations. On the II, this also posed
a problem, and in order to fix it a tunable rotation offset was created. The tunable
parameter would allow the user to change the rotation offset after taking an initial

measurement to determine how much of a rotation was required. This tunable would
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Figure 4-21: Average reference and signal trace taken by the USRP with a weak
measurement at 340 mV
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Histogram, window = 7770 ns

Histogram, window = 7740 ns
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Figure 4-22: (a) 8 microsecond pulse of phase data collected by the USRP at 260mV
measurement strength with 10000 traces collected and processed to extract 1Q pop-
ulations. (b) Same setup as (a) but with a measurement strength of 40mV.

need to be recalibrated upon each new start up but not in between individual data
collection runs. On the USRP, the issue was confounded by the fact that each reset
of the local oscillator would change the rotation of the populations. Furthermore,
each new reset of the application also reset the local oscillator inside the USRP, and

since the USRP application was reset periodically after each data collection in order
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to ensure no trigger misalignment, each data set would have a different population
rotation. The solution to this was to provide two signals of a known phase difference
before each data collection to allow the USRP to calibrate itself, similar to the 1Q
calibration that occurs in the DDC. This means a real time tunable is necessary to
counteract the rotation of the populations. This tunable alongside the window length
tunable of the moving periodogram allows the data going into the bayesian tracker
to be properly formatted and streamline calculations down the pipeline. Figure 4-23
shows 3 different data sets and the corresponding half angle measurements (post pro-
cessed in Matlab). That half angle measurement is what the tunable would ideally

account for in real time.

./qc_data_Ifs/QC USRP 012719/QC-USRPData_012720_152147.tdms ../qc_data_Ifs/QC USRP 012719/QC-USRPData_012720_152247.tdms
Fit, Histogram, window = 7770 ns

Fit, Histogram, window = 7770 ns
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../qc_data_Ifs/QC USRP 012719/QC-USRPData_012720_152356.tdms
Fit, Histogram, window = 7740 ns
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Figure 4-23: (a) Same as Figure 4-22b but with explicit angles called out. (b) Similar
but at 120mV measurement strength. (c) 260mV measurement strength
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rk/qc_data_Ifs/QC B282 Lab Data 01282020/QC-USRPData_012820_115140.tdms C:/Work/qc_data_Ifs/QC USRP 012719/QC-USRPData_012720_150308.tdms
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Figure 4-24: (a) 8 microsecond pulse of phase data collected by the USRP at 340 mV
measurement strength with 1000 traces collected processed to extract IQ populations.
(b) Same setup as (a) but at 320 mV
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Chapter 5

Alternate Technologies

LabVIEW and the USRP platform aside, there are other tools that should be analyzed
alongside the USRP rather than analyzing the USRP’s capabilities in isolation (which
only paints part of the picture of which tools are best suited for quantum sensing and
control). An analysis of comparable options is necessary to fully trust any conclusion

about the viability of a platform like the USRP.

5.1 CPU vs ASIC vs FPGA

While the focus of this work has been validating the USRP as a FPGA platform, it
is worth explaining why the scope is restricted to FPGAs in the first place. CPUs
and ASICs offer benefits above FPGAs in a variety of cases. CPUs (and microcon-
trollers) are much easier to reprogram and test. They offer extremely fast iteration on
development cycles. ASICs offer superior power and performance capabilities. The
bulk of the work occurs in the design and optimization phase of the ASIC, and once
the design of the ASIC has been finalized, no CPU will be able to match the perfor-
mance of the chip produced. However, each of these devices have their drawbacks.
An ASIC produces such amazing performance at the price of little to no reprogram-
ming functionality. If a new parameter needs to be introduced, an ASIC has no
way of incorporating that. The elevated cost, in both time and money, is another

issue that plagues ASICs. For an application that is still development such as this
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QSC algorithm an ASICs would have involved millions of dollars plus years of testing
and tape out before a trusted final product could be produced. While a CPU offers
great prototyping speed through easy programmability and lower cost to implement,
a CPU based approach would suffer from performance issues when trying to meet the
rigorous specifications of a quantum experiment like the one relevant to this work in
terms of speed of calculation. Thus, an FPGA seems to be a logical choice. FPGAs
offers more reprogramming functionality and lower than an ASIC cost but do require
more effort and time to reconfigure than CPU or microcontroller. While they are
not as robust as ASICs, FPGAs do provide enough speed and performance for this
application, far beyond any CPU which also explains their middle ground price point,
more expensive than a CPU but cheaper than ASIC.

5.2 FPGA Platforms

This section explores a few established methods for implementing tasks like quantum
sensing and control that are FPGA-based. Two main methods will be discussed in
the section: high level synthesis and HDL. Each have their own pros and cons that
vary from project to project. Under the lens of this work, a hybrid implementation
of the two made the most sense, leveraging the Simulink/HDLCoder workflow but
also requiring some VHDL tweaking in order to ensure functionality across platforms.
One less discussed approach is to start with just the bare bones FPGA chip and build
up a custom analog front end, write custom data communication protocols (for data
to move from the analog front end to FPGA as well as to get data off the FPGA
back to the host), and build a native host application from scratch. This time and
labor intensive approach seems to ignore possible existing technologies that could
be leveraged in favor of avoiding any external learning curve. With a knowledge of
RF circuits, Python (or similar language), and Verilog/VHDL, one could theoretical
tackle the entire project. However, using existing solutions to portions of the prob-
lem greatly reduce development time. Reinventing the wheel, while impressive, is

unnecessary in this case.
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5.2.1 High Level Synthesis (HLS) Approach

Starting close to the top of the stack, is the HLS approach. The general theme of
these methods is to abstract away as many of the unnecessary hardware details as
possible. These approaches vary in just how "high level" they actually are, with
some requiring little to no knowledge of the underlying hardware and some requiring
a working knowledge of Verilog or VHDL. The two main implementations discussed
here are known as Quantum Machines [16] and Artiq [3]. Both utilize a python style
language with closed hardware systems.

Artiq provides a python API in which you can program their many hardware
products to perform real time calculations. Artiq effectively abstracts away the FPGA
underlying the quantum processes. While the interactions between the FPGA and
quantum process are hidden, the timing critical aspects are viewable and accessible
to users. This ends up putting a large emphasis on real time calculations for timing

critical applications.

QUANTUM

MACHINES

Figure 5-1: Quantum Machines brought together a range of engineers and scientist
to build their flexible platform

Quantum Machines provides a single one stop shop for quantum experiments and
control with a processor capable of interfacing with qunatum systems of a wide variety.
Everything from superconducting qubits to ion traps to quantum dots is supported
on their OPX platform. While it does not run using Python or another popular
language, the language they developed, QUA, provides a easy to learn environment

with much of the same capabilities as an Artiq based piece of hardware.
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5.2.2 HDL Approach

In contrast to the previous section, a HDL focused approach boasts improved per-
formance at the cost of ease of use. More familiar to the world of FPGAs and less
familiar with the world of quantum computing, a lot of these implementations are
more flexible and just happen to meet the specifications required to conduct quantum
experiments. Though the margin with which they achieve the required performance
is a useful metric to consider. The USRP LabVIEW environment reports an approx-
imately 50% resource utilization with the entire QSCA on chip (though not tested
for functionality). This margin allows for edits and feature addition as the algorithm

or use case evolves.

Innovative

Integration, Inc.

Figure 5-2: Innovative Integration provided an industry standard FPGA for quantum
research for many years.

The first noteworthy implementation in this category would actually be the In-
tegrative Innovations FPGA card that was used as a benchmark to compare against
the USRP. The II card offered good signal quality (see Figure 5-3) and was built on
a resource rich Xilinx board. The capabilities of the II were strong, but it suffered
from reliability issues as well as a lack of software support for drivers. While by the
end of the development process a hybrid approach was being implemented with the II
card and the Simulink/HDLCoder environment, work began with the Xilinx SysGen
approach alongside the II card. A compatibility issue broke this work flow and for a
time the work continued by hand coding a lot of the QSCA in VHDL for the II card
which, as was mentioned, is very time consuming. This was part of the reason why
an alternative was sought in the USRP.

Another possible implementation platform for a project like this is the Xilinx
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Figure 5-3: Innovative Integration provided an industry standard FPGA for quantum
research for many years.

RFSoC. This FPGA platform is designed for RF signal research and fills a similar
niche that the USRP does. However, it also is a Xilinx product and thus not tied
to a LabVIEW development environment which provides more flexibility (or work
depending on how you look at it). The frequency range specifications and signal
quality benchmarks are similar or slightly better (depending on the exact model)
to that of the USRP making it a likely candidate for future research. Ultimately,
the optimal hardware choice for quantum sensing and control depends heavily on
the precise nature of the experiment or application, but the USRP has proven to be

worthy of consideration for most applications.
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Chapter 6

Conclusion and Future Work

This final chapter summarizes the findings of this work by first looking back to the
first byproduct of this work. This work began with a review of the quantum system
that would be used as a testbed to understand how to apply sophisticated control
algorithms to quantum systems. The first major product of the work is a poster
seen in Figure 6-1 that laid out the initial plan and expectations as well as a general
motivation and experimental process. While some of the goals were not achieved, the
groundwork was laid for future USRP research to continue in the quantum sensing

and control field.

6.1 Is the USRP suitable?

The USRP provides a FPGA platform that can reliably run portions of the QSCA
in a similar fashion to that of the Il FPGA. The moving periodogram output of the
USRP and II produce comparable SNR values, overall signal quality (with the excep-
tion of additional AC coupling in the USRP), and 1Q populations. Both the II and
the USRP exhibit similar behavior when running the bayesian tracker which seems
to indicate current stalls in the progress are more likely due to the HDLCoder devel-
opment workflow. Specifically, the error can probably be traced to how HDLCoder
is generating the VHDL and what settings can be altered to ensure the generated

VHDL matches what is expected. One way to go about ensuring this would be to try
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the test bench generation feature within HDLCoder or a more ground up approach of
HDL development must take place. The drawbacks of the USRP include a restricted
development environment (LabVIEW) and less flexible RF hardware. Though both
of these can also be viewed as strengths since the LabVIEW environment is relatively
user friendly and the benefits of having RF hardware built into the USRP can come
in handy. Ultimately, the USRP is a viable candidate to conduct quantum sensing

and control research.

6.2 Is the QSCA complete?

This work’s secondary purpose was to finish development of the QSCA’s control block.
An initial iteration was completed that included a PLL controller with emphasis on
finding a good filter to be deployed digitally. The trade offs of rise time and filter
order and filter type were explored. While no hardware testing was done with the
command block, Matlab simulations indicated that in the open loop, the controller
would generate command signals that theoretically would stabilize the Rabi oscilla-
tions. Unfortunately, no closed loop simulations or formal hardware testing was done,

but the USRP was able to compile the full QSCA including the command block.

6.3 Future work

6.3.1 RF Capabilities

There were a few USRP RF signal characteristics that should still be investigated to
further understand and solidify that the USRP is a suitable platform for continuing
development of the QSCA. The first would be to determine how the USRP’s signal
characteristics behaved at different input frequencies. While not an immediate con-
cern since the quantum system used was tuned to 25 MHz, the external heterodyne
could have been set to any frequency in the USRP’s acceptable range of 10 MHz to 6
GHz. Thus checking the SNR and PSDs of data collected by the USRP at different

input frequencies would provide useful insight to the signal quality performance of
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the USRP. Another useful experiment would be to understand the precise reason for
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Figure 6-1: Preliminary poster describing this work
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the differing shape of the noise floor when comparing PSDs of the II to that of the
USRP. The low frequency trends don’t match up and it would be interesting to see
if that trend still held if IF was at a higher frequency like 50 MHz.

6.3.2 Closed Loop Control

Since the bayesian tracker is still in the process of being validated the command block
was not implemented on either the II or the USRP. However, it was simply compiled
to see if the USRP could fit (and meet timing) with the entire QSCA on fabric.
This was successful but no test was done on the resulting implementation. After
both the Command and Estimate stages are validated for the USRP, a closed loop
control experiment could begin to see how well the qubit’s Rabi oscillations could be
sustained using the USRP for feedback. The validation of the command block would
involve completing actual closed loop simulations before running the algorithm on

the USRP.

6.3.3 Full State Feedback

After the closed loop control experiment is conducted, the next logical step would be
to implement a more sophisticated control scheme in form of full state feedback on
the qubit’s state. Since the bayesian tracker acts as a sophisticated state estimator, a
LQR or similar algorithm could be used to generate gain values for closed loop control.
This would also be computationally intensive so timing and resource utilization would
be a concern, but if significant enough optimizations could be made, the benefits of
full state feedback over the pseudo-PLL controller currently in development would
allow for easy control of many qubits with better distrubance rejection and optimal

response times.
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Appendix A

Tables, Figures, and Code

Table A.1: Ground State SNRs

Table A.2: Excited State SNRs

Power Level SNR
260 mV 17 dB
200 mV 9.93 dB
140 mV 5.38 dB
80 mV 2.52 dB
40 mV 1.34 dB

Power Level SNR
260 mV 17.22 dB
200 mV 10.87 dB
140 mV 5.15 dB
80 mV 2.76 dB
40 mV 1.39 dB
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Figure A-1: Moving Periodogram Case Study Labview code
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Figure A-2: Moving Periodogram Case Study Labview code

81



T
I} Count ReseT

¥ -+ 3
0!  PHASEFIFO.Read
» Number of Elements

¥ -+ i ] -+ ¥
 PHASEFIFO.Read 0! — MAGFIFORead
» Number of Elements

» Number of Elements

2 &= ? 2
Trace Threshold Reached? |

o

[5000}p— Timeout (ms)

Data [

Elements Remaining ¥

[50001} Timeout (ms] 5000}y Timeout (me)
Data " Data 0
Elements 3| Elements 4 Elements Remaining ¥

DBL

PHASE Scaling Factor
B
o

I

=]
=]
=]
=]

Figure A-3: Moving Periodogram Case Study Labview code
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Figure A-4: Moving Periodogram Case Study Labview code
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